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Dynamical model for stretched exponential relaxation in solids
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A dynamical model for stretched exponential relaxation in solids is developed. The essential assumption is
that the relaxation of a macroscopic parameter can take place simultaneously via a large number of channels,
each of which is controlled by a thermally activated ‘‘gate’’ that opens and closes at random with transition
rates that satisfy detailed balancing conditions. It is further assumed that the probability of any individual
channel being open is vanishingly small, although the spectral density of open channels is finite. It is shown
that in the model, stretched exponential relaxation reflects scaling behavior in the joint distribution of relax-
ation rates and transition rates for the open channels. The behavior is similar to an analogous static model
treated previously and reduces to that of the static model when the transition rates for the gates approach zero.
@S1063-651X~96!05106-9#

PACS number~s!: 05.40.1j, 76.20.1q, 75.60.Nt, 77.22.Gm

I. INTRODUCTION

Although the existence of Kohlrausch@1# or ‘‘stretched
exponential’’„exp@2~t/t!a#, 0,a,1… decay of various non-
equilibrium parameters characterizing macroscopic systems
is well established, an understanding of the origin of this
behavior is still not complete. This is largely a consequence
of the fact that a variety of microscopic mechanisms can give
rise to stretched exponential relaxation. In a previous paper
@2#, we proposed a static model for the decay that was based
on an analogy with the decay of the fluorescence in a system
with a random distribution of trapping centers. In the ap-
proach followed in Ref.@2#, the relaxation could take place
simultaneously via a number of channels that were labeled
by the symboln. It was assumed to take place locally on a
microscopic scale; however, the probability of a channel be-
ing open,Pn , varied randomly throughout the system. Thus
the time dependence of the relaxation was assumed to be
governed by an equation of the form

l ~ t !5 l 0K expF2(
n

WntG L , ~1!

whereWn is the relaxation rate associated with thenth chan-
nel, and the angular brackets denote a configurational aver-
age. This average can be written

l ~ t !5 l 0)
n

~12Pn1Pnexp@2Wnt# !, ~2!

wherePn is the probability of thenth channel being open.

It was hypothesized that there is a continuum of relax-
ation channels with a small probability of any one of them
being open. When this is the case, Eq.~2! reduces to the
following expression:

l ~ t !5 l 0expF2(
n

Pn~12exp@2Wnt# !G ,
5 l 0expF2E

0

`

dWrW~W!~12e2Wt!G , ~3!

whererW(W) denotes a weighted density of relaxation rates
and is given by the equation

rW~W!5(
n

Pnd~W2Wn!. ~4!

In this approach, stretched exponential decay is associated
with singular behavior in the density of relaxation rates for
the open channels asW→0, i.e., rW(W);W2a21 leads to
asymptotic stretched exponential relaxation characterized by
the exponenta. Recently, a rigorous derivation of Eq.~3!
was given by Vlad and Mackey@3#, who showed that it is
exact for a Poissonian distribution of independent channels.

The purpose of this paper is to outline adynamicalmodel
of stretched exponential relaxation in which the channels are
controlled by independent, thermally activated ‘‘gates’’ that
open and close randomly with time. It is assumed that an
‘‘open’’ gate corresponds to the thermally excited state of
the subsystem controlling the relaxation of thenth channel
while the ‘‘closed’’ gate is associated with the subsystem
ground state. In place of Eq.~1!, one has an expression of the
form
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l ~ t !5 l 0K expF2(
n
E
0

t

wn~ t8!dt8G L , ~5!

where the angular brackets now refer to a thermal average.
The symbolwn(t) denotes a time-dependent relaxation rate
that assumes the valueWn when the gate is open and 0 when
it is closed. Since the channels are independent of one an-
other, Eq.~5! can be written as a product over the various
channels, viz.,

l ~ t !5 l 0)
n

K expF2E
0

t

wn~ t8!dt8G L . ~6!

The evaluation of the thermal average in Eq.~6! will be
discussed in the following section.

II. MODEL CALCULATION

In this section, we outline a model calculation for the
bracketed expression appearing in Eq.~6!. Since the results
apply to a single channel, we will drop the labeln for the
time being. The approach we follow exploits the similarity
between a situation where the relaxation rate fluctuates be-
tween the valuesW and 0 and an analogous situation occur-
ring in magnetic resonance where the transition frequency
fluctuates between two values@4,5#. The theory developed in
Ref. @4# can be applied to the present situation, the only
modification being the use of an imaginary frequency to rep-
resent the relaxation rate. The resulting expression for
^exp@ #& assumes the form

K expF2E
0

t

w~ t8!dt8G L 5P•exp@2Vt#U, ~7!

whereP is a row vector with elementsP and 12P, P de-
noting the probability the gate is open, andU is a column
vector with both elements equal to 1. The 232 matrixV is
defined in terms of the unit matrix1, and the Pauli spin
matricessx , sy , andsz by means of the equation@5#

V5~R1 1
2W!12Rsx2 i«sy1~«1 1

2W!s2 , ~8!

whereW denotes the relaxation rate associated with the
channel in question. The symbolsR and« are related to the
gatetransition rates,Roc, the transition rate from the ‘‘open’’
or excited state to the ‘‘closed’’ or ground state, andRco, the
transition rate from the closed state to the open state, through
the equations

R5 1
2 ~Roc1Rco!, ~9!

and

«5 1
2 ~Roc2Rco!. ~10!

It should be noted that for systems in thermal equilibrium,
the two transition rates are related by a detailed balance
equation, which takes the form

PRoc5~12P!Rco. ~11!

It is convenient to rewrite exp@2Vt# in terms of a com-
plex unit vectorn defined by

n5„R,i«,2~«1 1
2W!…/C, ~12!

whereC, a normalizing factor, is given by

C5@R21~«1 1
2W!22«2#1/2. ~13!

The expression exp@2Vt# takes the form

exp@2Vt#5exp@2~R1 1
2W!t#exp@Cn•st#. ~14!

Using a standard identity for the Pauli matrices@5#, the factor
exp@Cn•st# becomes

exp@Cn•st#5cosh~Ct!1n•s sinh~Ct!. ~15!

Inserting Eq.~15! into Eq. ~7! leads to the result

K expF2E
0

t

w~ t8!dt8G L 5e2@R1~1/2!W#t$cosh~Ct!

1C21@R1~ 1
22P!W#sinh~Ct!%.

~16!

Equation~16! is seen to reproduce the expected behavior in
the limitsW50, in which caseC5R and the right-hand side
reduces to 1, andR5«50, in which caseC5 1

2W and the
right-hand side reduces to 12P1P exp@2Wt#, correspond-
ing to the static limit discussed in the Introduction. As will
be shown in the following section, stretched exponential be-
havior is associated with situations where there is a con-
tinuum of channels for whichP!1.

III. STRETCHED EXPONENTIAL RELAXATION

As in the static model, stretched exponential relaxation
can arise when there is a continuum of relaxation channels
where the probability of any single channel being open is
much less than 1. As a starting point in the analysis, we
evaluate the right-hand side of Eq.~16! by using the detailed
balance equation to expressn andC in terms ofRoc andP,
and then expand the expressions to first order inP. The
resulting equation takes the form

K expF2E
0

t

w~ t8!dt8G L 512W2~Roc1W!22P

1W2~Roc1W!22P

3exp@2~W1Roc!t#, ~17!

having approximatedC by its zeroth-order term,12~W1Roc!,
in the arguments of the hyperbolic functions.

Equation~17! is similar to the expression in parentheses
on the right-hand side of Eq.~2!, except that in place ofP
andW, there appearrenormalizedprobabilities and transition
rates defined by

PRe5W2~R01W!22P ~18!

and

WRe5~11R0 /W!W. ~19!
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Here we have made use of the assumption thatP!1 and
replacedRoc by its zero-temperature limit,R0 . Since the
right-hand side of Eq.~17! is similar to the factor in paren-
theses on the right-hand side of Eq.~2!, the resulting expres-
sion for l (t), which is the counterpart of Eq.~3!, has the
form

l ~ t !5 l 0expS 2(
n

Wn
2~R0n1Wn!22Pn

3~12exp@2Wnt2R0nt# ! D . ~20!

Following Ref. @3#, we can obtain the conditions for
stretched exponential relaxation from the time derivative of
the argument of the first exponential in Eq.~20!. Matching
the first derivative to the first derivative ofta, we obtain the
relation

ata21;(
n

Wn
2~Wn1R0n!21Pnexp@2Wnt2R0nt#.

~21!

We introduce the joint distribution,rWR(W,R0) for the re-
laxation rates and transition rates of the open channels by
means of the equation

rWR~W,R0!5(
n

Pnd~W2Wn!d~R02R0n!, ~22!

so that Eq.~21! can be written

ata21;E
0

`E
0

`

dW dR0W
2~W1R0!

21rWR~W,R0!

3exp@2Wt2R0t#. ~23!

In our model, asymptotic stretched exponential relaxation re-
flects scaling behavior ofrWR(W,R0) near the origin. This
can be seen by introducing the dimensionless variables
x5Wt andy5R0t. The functionrWR(W,R0) then becomes
a function of the ratiosx/t andy/t. The scaling behavior that
is postulated is of the form

rWR~x/t,y/t !;tbg~x,y!, t→`, ~24!

i.e., in the limit of small arguments,rWR(W,R0) is a homo-
geneous function of degree2b. Using Eq.~24! in Eq. ~23!,
we find that the right-hand side of this equation varies as
tb23, from which we infer thata5b22. Since we have
0,a,1 for stretched exponential behavior,b must satisfy
2,b,3. We postpone discussion of this result to the follow-
ing section.

IV. DISCUSSION

In this paper, we have outlined a dynamical model for the
asymptotic stretched exponential relaxation of macroscopic
parameters in solids. The basic assumption was that the re-
laxation took place simultaneously through a large number
of channels that were controlled by gates. An open gate cor-
responded to a thermally excited state of the subsystem con-
trolling that channel, while the closed gate was identified
with the subsystem ground state. The contribution of thenth
channel to the overall relaxation was set by the relaxation
rate associated with the channelWn , the transition rates for
closing and opening the gate,Rocn andRcon , and the equilib-
rium probability that the gate would be in an open statePn ,
with the latter three parameters being related to one another
by a detailed balance equation.

Stretched exponential relaxation arose in a situation
wherePn!1 ~corresponding to an activation energy@kT!. A
critical condition was thatrWR(W,R0), the joint distribution
of relaxation and transition rates for the open channels, had
the scaling behavior displayed in Eq.~24!, with 2,b,3. It
should be noted that since Eq.~23! is a two-dimensional
Laplace transform, one can also employ various Tauberian
theorems to characterize the asymptotic behavior of
rWR(W,R0) in more precise terms@6#.

Although the model considered is probably too crude to
be applicable in detail to any particular stretched exponential
relaxation process, the essential features of relaxation occur-
ring in parallel through a large number of channels and the
presence of the thermal disorder~or, in the case of the model
discussed in Ref.@2# static disorder! accompanied by scaling
behavior in the joint distribution of single-channel relaxation
and transition rates, may very well be characteristic features
of many stretched exponential processes.
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